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S U M M A R Y
Uncertainty estimation and quality control are critically missing in most geophysical tomo-
graphic applications. The few solutions to cope with that issue are often left out in practical
applications when these ones grow in scale and involve complex modelling. We present a
joint full waveform inversion and ensemble data assimilation scheme, allowing local Bayesian
estimation of the solution that brings uncertainty estimation to the tomographic problem. This
original methodology relies on a deterministic square root ensemble Kalman filter commonly
used in the data assimilation community: the ensemble transform Kalman filter (ETKF).
Combined with a 2-D visco-acoustic frequency domain full waveform inversion scheme, the
resulting method allows to access a low-rank approximation of the posterior covariance matrix
of the solution. It yields uncertainty information through an ensemble-representation, that
can conveniently be mapped across the physical domain for visualization and interpretation.
The combination of ETKF with full waveform inversion is discussed along with the scheme
design and algorithmic details that lead to our mixed application. Both synthetic and field-data
results are presented, along with the biases that are associated with the limited rank ensemble
representation. Finally, we review the open questions and developments perspectives linked
with data assimilation applications to the tomographic problem.
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1 I N T RO D U C T I O N

Geophysical tomography is a set of fundamental techniques in geo-
physical exploration, allowing to make sense of physical measure-
ments to characterize subsurfaces properties. Seismic tomography,
in particular, aims at estimating said properties from wavefield mea-
surements. As wavefields behaviour and evolution are imposed by
the physical properties of their propagating medium, it is possible
to determine those physical parameters through inverse problem-
solving.

Seismic tomographic applications cover a broad spectrum of
scales and targets, as they are commonly used both, for regional to
global scale in the academic community (Aki et al. 1977; Bedle &
Lee 2009; Panning et al. 2010; French & Romanowicz 2015) and for
crustal-scale exploration industrial applications (crustal scale imag-
ing, reservoir monitoring and civil engineering targets). Amongst
the many variants of seismic tomography, full waveform inversion
(FWI, Lailly 1983; Tarantola 1984) has been growing in popularity
in the past decades. As opposed to most variants of seismic tomog-
raphy application, FWI aims at taking advantages of the entirety
of the recorded data without discarding any valuable phase and
amplitude measurements, whereas other techniques tend to focus
on specific and small subsets of information (first arrival time, first

arrival phase or amplitude). Despite implying a more complex prob-
lem to solve, (as it involves simulating complete wavefield recording
instead of portions of data), its superior resolution power makes it
a popular imaging technique both in academic geosciences and in
the exploration industry.

Academic applications of FWI yield results allowing to better
understand complex mechanisms and structures at depth (Fichtner
et al. 2009; Tape et al. 2010; Fichtner et al. 2013; Bozdağ et al.
2016), that seismic ray tomography resolution may not allow. FWI
is routinely applied in many industrial workflows (Plessix 2009;
Sirgue et al. 2010; Plessix et al. 2012; Warner et al. 2013; Zhu et al.
2015; Operto et al. 2015) focused on crustal-scale exploration. In
this context, FWI outputs are either used at later processing stage
to perform migration of seismic-reflection data or might be used as
a model on its own for interpretation (Shen et al. 2018). However,
one of the main issues of FWI besides cost and complexity is the
scarcity of options for quality control and uncertainty estimation.
While such an ill-posed, non-linear problem would greatly bene-
fit from it, the state-of-the-art methods have not been massively
adopted by the community. Up to now, most of the quality control
assessment is either conducted by cross-validation with other geo-
physical techniques or well-log data (in situ comparison) which are
either costly or impossible to realize past the shallow crustal scale.
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The uncertainty quantification research field in the frame of FWI
and seismic tomography is quite recent, as it has been overlooked
in favour of a focus on understanding the imaging power and is-
sues of the FWI concept first, improving the formulation to make it
more affordable and improve its outcomes. Consequently, the whole
topic is still regarded as a challenging problem to tackle (Rawlin-
son et al. 2014). To deal with the uncertainty shortcoming, we can
seek a solution in the Bayesian inference framework for general
inverse problems, as presented by Tarantola (2005), which would
allow expressing uncertainty in a Bayesian and probabilistic for-
malism, as opposed to FWI deterministic form. Tarantola (2005)
states that the posterior covariance of the minimization problem
is equivalent to the inverse Hessian operator when the solution is
close to the global minimum. Hence, access to the inverse Hes-
sian operator or the posterior covariance might be the solution to
achieve uncertainty estimation that FWI is currently lacking. This
is especially true in the case of multiparameter FWI where inter-
parameters cross-talk are involved (Operto et al. 2013). Although
recent propositions to evaluate the effects of the Hessian on a vec-
tor through second-order adjoint approaches has proven valuable in
the context of optimization (Fichtner & Trampert 2011a; Métivier
et al. 2013, 2014; Matharu & Sacchi 2019), computation of the full
Hessian and its inverse is out of reach. In order to access the con-
tent of the Hessian operator and estimate the posterior covariance
information, the ‘Hessian-based’ uncertainty estimation method-
ologies, are calling on either dimensionality reduction (making the
Hessian size tractable) or evaluating partial information from the
operator through various approximations. Although not producing
uncertainty estimation, Fichtner & Trampert (2011b) and Fichtner
& van Leeuwen (2015) estimate resolution and physical parameters
tradeoffs of the solution through probing of the Hessian. Du et al.
(2012) and later Jordan (2015) are relying on model parameteri-
zation with B-Spline functions, that drastically reduce the number
of degrees of freedom, to estimate the full Hessian in a reduced
problem. Bui-Thanh et al. (2013) approximate the Hessian opera-
tor at the solution, with the matrix-free Lanczos method to build a
low-rank approximation of the Hessian. The pseudo-inverse of this
approximation then yield an approximate inverse Hessian. Zhu et al.
(2016), Eliasson & Romdhane (2017) and Liu & Peter (2019) are
relying on the randomized Singular Value Decomposition (SVD)
to estimate a truncated Hessian in a tractable way. Finally, using
the wavefield reconstruction inversion (WRI) to relax the inverse
problem formulation, Fang et al. (2018) demonstrate that the WRI
cost function is particularly suited for the quadratic approximation
that is assumed in all the methods mentioned above and therefore
justifies the assumption of Gaussianity of the posterior distribu-
tion. To estimate uncertainty, they approximate the Gauss–Newton
Hessian, from which the square root makes it possible to sample
the posterior covariance once the approximate Gauss–Newton Hes-
sian is computed and stored. However, these methodologies are
limited by their computational cost: their Hessian approximation
procedures are based on matrix-free Hessian-vector prodcuts, that
require to solve expensive numerical wavefield simulations. This is
also the case for the evaluation of the Gauss–Newton Hessian. These
approximation procedure are also sequential by nature and there-
fore prevent scalability of the aformentioned uncertainty estimation
method.

Concurrently, the data assimilation (DA) community has de-
signed, for several decades, methods to solve inverse problems with
a large number of degrees of freedom, high degree of complexity
and data sparsity, while integrating uncertainty quantification within
their inverse problem-solving schemes. Generally, the overall goal

of DA in geophysical applications is to characterize the state of a
dynamic system through time, which can be subjected to non-linear
dynamics, by combining sparse observations and numerical mod-
els. DA has notably been successfully implemented at operational
scales in areas such as numerical weather forecasting, oceanogra-
phy, reservoir characterization and climatology (Rodell et al. 2004;
Navon 2009; Cosme et al. 2010; Lee et al. 2016). Most of the dy-
namic models in those fields of applications consist of solving a
forward problem based on prior information on the system state.
Unfortunately, the non-linearities inherent to those systems prevent
accurate forecast at long timescales, as they tend to diverge if in-
tegrated for too long. To deal with this limitation, DA introduces
observational knowledge as soon as it is available along the forecast,
to correct the state estimates and thus improve the predictions by
taking into account model and data biases. The first DA assimilation
modern tool based on this idea of sequentially providing a forecast
through modelling, and correcting the state estimate with observa-
tions, has been introduced by Kalman (1960), through the Kalman
filter (KF). The KF, however, is a limited tool only providing solu-
tions to study small-scale, linear systems. Even though the KF can
be extended to non-linear problems, it requires manipulations of
covariance matrices and large operators preventing to go beyond a
few hundred to thousands of parameters. A generalization to large-
scale problems has been proposed by Evensen (1994), introducing
the ensemble Kalman filter (EnKF). It allows avoiding any explicit
covariance matrices manipulations thanks to a low-rank ensemble
representation of system states, from which the covariances infor-
mation can be approximated. The EnKF is currently developed at
an operational level and is commonly used in weather on up to 109

degrees of freedom (as it is the case for the MOGREPS global as-
similation system ran at the Met Office (United-Kingdom) or the
ICON global domain model ran at the Deutscher Wetterdienst (Ger-
many) as part of their numerical weather prediction routines). As
EnKF allows to handle problems non-linearity and is designed to
deal with a large number of parameters, as it is the case with the
FWI problem, we might be able to take advantage of the EnKF
formalism to bring a new look at uncertainty estimation in FWI.

Applying DA or ensemble-based methods to geophysical tomog-
raphy has already started being investigated. Indeed Jin et al. (2008)
propose using the EnKF to solve 1-D prestack FWI. Gineste & Ei-
dsvik (2017) and later Gineste et al. (2019) proposed to used the
Ensemble Kalman Smoother (Evensen & Van Leeuwen 2000) and
the Iterative Ensemble Kalman Smoother (Bocquet & Sakov 2014)
to inverse 1-D velocity profiles. Liu & Grana (2018) propose to use
the Ensemble Kalman Smoother to inverse jointly elastic and petro-
physical rock properties in the context of reservoir monitoring. In
this study, we wish to suggest an original DA-FWI scheme adapted
to take advantage of both worlds, by combining a classical FWI
quasi-Newton solver and an ensemble filtering, to characterize the
uncertainty of the solution. We expect that including quasi-Newton
optimization will speed up the convergence of the filter, while also
linearizing the least squares analysis step. It is also worth mentioning
that our proposition is also different from other Bayesian method-
ologies such as Martin et al. (2012), Bardsley et al. (2014), Biswas
& Sen (2017) who propose different approaches based on Markov
chain Monte Carlo instead of DA. Other methods directly involving
EnKFs as Iglesias et al. (2013); Schillings & Stuart (2017) would
advocate for solving the FWI with the EnKF as the minimization
technique itself, rather than relying on quasi-Newton methods.

In this study, we will develop the theoretical aspects of DA by
reviewing the ensemble transform Kalman filter (ETKF) used in
our application. Following by a brief review of the FWI problem we
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will expose the structure of our mixed ETKF-FWI scheme in details,
before presenting applications on both synthetic and field-data. Is-
sues associated with ensemble rank-limited uncertainty estimation
will be discussed along with the importance of prior information,
advantages and shortcomings of our methodology.

2 I N T RO D U C I N G DA T O T H E
T O M O G R A P H I C P RO B L E M

Characterization of systems subject to non-linear dynamics, numer-
ical weather forecasting for example, is significantly different from
the general tomographic problem. It generally relies on computa-
tionally intensive forecast modelling operators evolving the system
state through time, giving access to prediction possibilities. How-
ever, natural systems non-linearities will most certainly cause the
forecast to diverge at some point, limiting predictions through mod-
elling at brief timescales (Fletcher 2017). The forecast, or modelling
task, is also made difficult by the mismatch between the physical
world, and its mathematical description; The correct set of equations
governing a physical process may not be known, or one might only
afford to compute their approximations. Besides, estimating the
boundary conditions in limited space simulations, or defining cor-
rect and accurate initial conditions, is often challenging (Evensen
2009). Therefore, modelling is not enough to accurately study sys-
tems like Earth’s atmosphere or oceans dynamics. The role of DA is
to make use of the state’s measurement and integrate data to correct
for the imperfect forecast by connecting modelling and observations
into an optimal analysis state.

DA can also be viewed as inverse modelling in some fields of
research (Fletcher 2017), and is used to perform retrieval, which
consists of combining prior state statistical insights, with observa-
tions. Thus, the DA problem is merely a matter of estimating the
model parameters, considered as a set of random variables, from the
previous or current state of the system (prior statistical knowledge)
(van Leeuwen et al. 2015). As DA schemes and tools have been
developed for non-linear problems at large operational scales, and
because of the retrieval capacity of such schemes, we believe DA
can be a solution to consider, as for the FWI uncertainty estimation
problem. To that extent, we introduce the DA principles that allow
us to expand the FWI formulation to an ensemble representation
and unlock uncertainty assessment in the next subsections.

2.1 Ensemble Kalman filter

The ETKF (Bishop et al. 2001; Ott et al. 2004) is a ‘square-root’
version of the EnKF proposed by Evensen (1994), which addresses
several biases that were included in Evensen’s original formulation.
It allows large-scale dynamic system study, thanks to an ensemble
representation. By assuming that model and data errors are Gaus-
sian, the state estimate and uncertainty are represented by first and
second order Gaussian moments (mean and variance). From an en-
semble of system state vectors, we can compute the relevant metrics
involved in the original KF formulation, which makes extension of
the KF scheme towards large scale problems affordable.

We adopt the following notations: P designates a generic co-
variance matrix while P f and Pa denote the forecast and analysis
covariances, respectively. Subscript e in Pe, P f

e and Pa
e stands for the

ensemble representation of said covariance matrices. Furthermore
we will denote matrices by bold letters, vectors with a standard font,
and use caligraphic letters to define non-linear operators.

Defining an ensemble m as a n × Ne matrix whose columns
contain Ne state vectors m(i) ∈ R

n with n parameters:

m = {m(1), m(2), . . . , m(Ne )}, (1)

the system state estimate (first Gaussian moment) is given by

m̄ = 1

Ne

Ne∑
i=1

m(i). (2)

The ensemble covariance Pe provides an approximation of the true
covariance P (second Gaussian moment) provided Ne is sufficiently
big. It is computed according to

Pe = 1

Ne − 1
MMT , (3)

where M is the perturbation matrix defined as M (i) = (m(i) − m̄)
and the superscript T is the transpose operator. By construction, M
is at best of rank Ne − 1 and thus the ensemble covariance matrix
is rank limited.

The ETKF cycle is conducted in two successive steps: The mod-
elling is performed on each ensemble members independently (fore-
cast step) until data corresponding to the forecast, dobs ∈?Rd with
d observables, is available (analysis step). In that case, the analysis
corrects the ensemble forecast, based on forecast uncertainties and
observations uncertainties. The analysed ensemble then becomes
the initial conditions for the next ETKF cycle, and the process can
be repeated.

Considering first the forecast step in the ensemble formalism, the
forecast ensemble from a step k to k + 1 is given by

m f
k+1

(i) = Fk(mk
(i)) + ηk i = 1, 2, . . . , Ne, (4)

where F is a non-linear forecast operator generally evolving a dy-
namic system, ηk is a zero-mean normal noise vector which covari-
ance properties (generally denoted Q) describe the uncertainties
associated to F . The superscript f denotes the forecast state. In
practice, ηk might not be known, as evaluating the statistics of the
sources of errors in the modelling is a challenge on its own.

The analysis step is given as an approximation of the linear KF
analysis (the subscript k is discarded in the following, as all operation
are done within step k + 1). Following the original formalism and
considering for now a linear measurement operator H : Rn → R

d

projecting the model space into the observation space, the analysis
mean m̄a is given by,

m̄a = m̄ f + K(dobs − Hm̄ f ), (5)

and the analysis covariance Pa by

Pa = (I − KH)P f = 1

Ne − 1
(I − KH)M f (M f )T , (6)

where dobs are observations, I the identity operator and K is the
Kalman gain matrix (Kalman 1960):

K = P f HT (HP f HT + R)−1, (7)

where R is the measurement noise matrix which contains the un-
certainty information related to data. The Kalman gain acts as a
weighting factor over the residual term (dobs − Hm̄ f ), based on a
ratio of forecast uncertainty over observation uncertainty.

The analysis equation of the KF can also be written into its
variational formulation, where the analysis state is given by the
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minimization of

J (m) =1

2
(m − m̄ f )T P f −1

(m − m̄ f )+
1

2
(dobs − Hm̄ f )T R−1(dobs − Hm̄ f ).

(8)

Implementing eqs (6) and (7) would require to compute Pf−1, which
is in practice too large to be directly invertible. However, using the
ensemble representation of eq. (3) in eqs (7), yields

K = 1

Ne − 1
M f (M f )T HT

[
1

Ne − 1
HM f (M f )T HT + R

]−1

, (9)

where M f is the forecast perturbation matrix, allows to express eq.
(6) as

Pa
e = 1

Ne − 1
(I − KH)M f (M f )T

=M f

[
1

Ne − 1
I + (M f )T HT R−1HM f

]−1

(M f )T .

(10)

Note that each time the observation operator appears in the final
expression of Pa

e , it is applied to the ensemble perturbation ma-
trix M f . In addition, HM f is the first order Taylor approximation
of H(m f (i)

) − H(m̄ f ), with H a non-linear observation operator
(Harlim & Hunt 2005). This development can be written as a lin-
earization of the general non-linear case over the ensemble repre-
sentation. Let us consider any non-linear observation operator H by
introducing the ensemble observation perturbation matrix Y f , such
that each column is defined as

Y f (i) = HM f (i) ≈ H(m f (i)
) − H(m̄ f ). (11)

We can then consider the analysis as an update of the perturbation
matrix from M f to Ma such that Ma satisfies

Pa
e = 1

Ne − 1
MaMa T

. (12)

Given eq. (12), the analysis takes as an input the whole forecast
ensemble {m f = m̄ f + M f }, and its output is its analysed version,
{ma = m̄a + Ma} (Harlim & Hunt 2005), allowing to circumvent
any unecessary covariance manipulation.

To update the ensemble perturbation matrix, Bishop et al. (2001)
propose to use the effective ensemble uncertainty P̃a spanning the
subspace defined by M f , satisfying eq. (12), giving

Pa = 1

Ne − 1
M f P̃aM f T

, (13)

with

P̃a = (
1

Ne − 1
I + Y f T

R−1Y f )−1. (14)

Note that eq. (14) generalizes eq. (10) to the non-linear case. The
symetric matrix P̃a can be expressed as the product of the square-
root matrices P̃a = TTT , where T plays the role of a transform
operator from which the filter takes its name. The square root of
P̃a is then used to perform the transform operation Ma = M f T and
with that, Ma satisfies eq. (12).

The non-unicity in the choice of the square-root lead to the propo-
sition of several Ensemble Square Root Filters, with various ways of
computing T. Amongst them are schemes referred to as one-sided
unable to prevent biased state estimate, or having the tendency to
produce outliers in the ensemble members (Bishop et al. 2001;
Wang & Bishop 2003; Evensen 2004; Leeuwenburgh et al. 2005).
For our methodological development we chose to follow the for-
malism proposed by Wang et al. (2004) and Ott et al. (2004), the

spherical simplex ETKF, which mitigates the aformentioned prob-
lems. The transform operator is thus defined as

T = C�−1/2CT , (15)

where the columns of C are the singular vectors of P̃a and � is a
diagonal matrix containing the singular values of P̃a . This allows to
update the forecast perturbation matrix following,

Ma =
√

Ne − 1M f C�−1/2CT . (16)

Following eqs (5) and (7), the analysed mean is then given by

m̄a = m̄ f + M f C�−1CT (Y f )T R−1
[
dobs − H(m f )

]
, (17)

where H(m f ) is the mean over the forecast observations. Finally,
the analysed ensemble is given by

ma
k+1

(i) = m̄a
k+1 + Ma

k+1
(i) i = 1, 2, . . . , Ne. (18)

In terms of computational cost, the manipulation of large scale co-
variance matrices is replaced with the SVD of the Ne × Ne matrix
P̃a and operations on Ne × n matrices through eqs (16), (17) and
(18). The ETKF formulation satisfies the hypothesis of the original
linear KF, while also providing an unbiased approximation of the
KF mean and covariance. Uncertainty estimate is allowed through
the evaluation of the ensemble covariance Pa

e , as a low rank ap-
proximation of the true covariance Pa . While rank reduction allows
efficient computation of an approximate of Pa , let us keep in mind
that problems of representativity can arise in the context of ensemble
based approximation. In the next subsection, we succinctly recall
the nature of FWI, before introducing the ETKF-FWI scheme.

2.2 Frequency domain FWI

FWI can be considered as a constrained optimization problem in
which one seeks to generate synthetic wavefield data dcal with a high
degree of correspondence with measured data dobs (Virieux et al.
2017). In that regard, the object of optimization is the subsurface
model, in which synthetic data are generated. Ideally, reducing the
misfit between dcal and dobs to a minimum should lead the resulting
synthetic model towards the real Earth parameters, provided the
initial model allows setting the problem in the correct basin of
attraction of the misfit function. Furthermore, to solve the FWI
problem, it is required to be able to model the full wavefield in any
physical media accurately. We will focus on the acoustic frequency-
domain formalism in the following, as it is the chosen approach for
the implementation of our proposed ETKF-FWI methodology.

In this framework, it is possible to reduce the wave equation
under a compact form (Pratt et al. 1998; Virieux et al. 2009) as a
generalization of the Helmholtz equation. In this section we adopt
the matrix representation of the partial-differential operators of the
continuous wave equation. The steady-state wave equation can thus
be expressed as the following linear system

B(ω, m)u = s, (19)

with B a complex-valued impedance matrix which values vary ac-
cording to the frequency ω and the medium properties m (Pratt et al.
1998; Operto et al. 2006), u is the pressure field (in the acoustic
case), and s is the source term. The favoured way of solving the
system in (19) is to factorize the B matrix into a product of lower
and upper (LU) triangular matrices, in order to use a direct solver
(Virieux & Operto 2009), to efficiently deal with multiple right hand
sides.
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Solving eq. (19) allows computing the value of the pressure field
in the entire medium depending on its physical parameters and a
given frequency. The synthetic data dcal are then extracted from the
wavefield at receiver locations with a linear observation operator
E. This enables solving the optimization problem by iteratively
minimizing the following misfit function

C(m) = 1

2
�d†�d, (20)

with �d defined as the misfit vector �d = dobs − dcal(m), and where
the superscript † denotes the conjugate transpose. The misfit func-
tion in (20) does not contain any prior statistical information such
as a model penalty term and data weighting, to keep the formal-
ism simple. In practice though, these types of prior information are
improving the solution and stability of the inverse problem by bet-
ter constraining the initial data and model covariances (Pratt et al.
1998).

One must keep in mind that FWI is a local optimization problem
implying that the initial parameters model m0 needs to be in the
vicinity of the solution for the global minimum. Thus, to achieve
convergence towards the global minimum mG is to assume that
the prior knowledge is already a reasonable estimate of the real
physical parameters. One basic way to solve the FWI problem is
to apply a gradient descent optimization scheme. Assuming the
starting model is adequately defined, the optimization will drive the
solution towards the global minimum; The model parameters are
iteratively updated according to

mk = mk−1 − αk−1∇mCk−1, (21)

where α is the step length and the subscript t denote a FWI iteration
number. The parameter α is computed by a line-search strategy.

Let us now introduce compact notation of both the forward and
inverse problem embeded in the FWI process, as these will be used
in subsequent sections. The forward modelling is only dependent on
the parameter model, therefore the forward modelling for a given
frequency can be expressed as

u = G(m) = B−1(m, ω)s, (22)

where G is a non-linear modelling operator, and m contains the
medium physical parameters. Following computation of the wave-
field in the full domain the computed pressure field is extracted at
receivers location by applying a measurement operator E, giving

y = Eu. (23)

Moreover, as the wavefield depends on the model parameters m one
can define a non-linear observation operator H as,

y = H(m) = EG(m), (24)

such that (24) yields the computed monochromatic wavefield data
at the recievers location.

As we conceptually reduce the synthetic data generation to the
observation operator H, we can also define and generalize the com-
plete FWI process as an inversion operator such as

mk = In(mk−1, dobs,k). (25)

Here, we consider In as a non-linear operator encapsulating alto-
gether: the forward simulation, computation of the misfit function,
its gradient and gradient descent iteration for any given model m.
The subscript n denotes the number of non-linear optimization it-
eration performed. Following the brief exposition of FWI and def-
inition of the FWI operator In , let us review now how the ETKF

can be modified to accomodate a tomographic application into the
ETKF-FWI scheme.

2.3 ETKF-FWI Scheme, filter parameters

As geophysical tomography is considered to be a static problem
at the considered time scales, applying the ETKF, designed for
dynamic systems, is not straightforward. However, with specific
parameterization of the ETKF, it is possible to take the specificities
of the FWI problem into account. We thus adapt the filter to the
FWI requirements and define an ETKF-FWI scheme (Fig. 1) that
allows for uncertainty estimation, combining adjoint-base FWI and
the ETKF algorithm.

As defined earlier in this section, the ETKF requires a forecast
step, based on a projection of the system state ahead of time. In the
DA community, it is common to see prediction steps as a forward
modelling engine applied to a system state. In our lack of time
dependency, we define a proxy for temporal evolution. By adopt-
ing a frequency continuation strategy, replacing the timesteps of
the KF forecast, by a set of K frequency bands k = 1, 2, ..., K,
we can take advantage of the FWI multiscale approach, commonly
used to mitigate cycle skipping issues (Bunks et al. 1995). Such
difficulty is related to the convergence towards local minima when
minimizing the FWI misfit functions. These local minima can be as-
sociated with the misinterpretation of the time delay in the recorded
trace, with a phase ambiguity. Thus, working with broader wave-
length data allows minimizing a more convex objective function.
Applying FWI from low to high frequency can, therefore, provide
a dynamic axis: FWI is treated as a frequency-dependent dynamic
process.

This frequency continuation axis, allows defining the forecast
operator as our adjoint-based FWI solver. This choice differs from
most standard DA application as we replace the forward problem
by the resolution of an inverse problem. Consequently, the FWI
problem is solved during the forecast by using the operator In

defined in eq. (25), on the Ne ensemble members, independently, at
a given k from the K frequencies or frequency bands considered.
The forecast eq. (4) thus becomes

m f
k

(i) = In(ma
k−1

(i)
, dobs,k). (26)

Typically, n will be set so that In performs 5 to 10 non-linear
iterations. Note that as the correct statistics of the process noise is
missing, the forecast uncertainty Q term cannot be included.

Because we seek to evaluate the parameter’s estimate uncertainty
and our choice of forecast operator, the considered system state are
subsurface model parameters. In a standard mono-parameter case,
the ensemble m is thus composed of Ne subsurface velocity models
m(i), i = 1, 2, ..., Ne, where we typically have Ne � n and Ne � d
by several orders of magnitude.

The initial ensemble is generated in such a way that it both satis-
fies the normal distribution hypothesis of the KF and local resolution
imposed by the FWI resolution power for a given frequency band
(Devaney 1984; Wu & Toksöz 1987). An ensemble member is built
by taking an initial model m0 suited for convergence, to which we
add a perturbation. Perturbations are generated by convolution of
zero-mean, uniformly distributed random vector ui (with i = 1, 2,
. . . , Ne) with a non-stationary Gaussian function G which correla-
tion length and amplitude are varying according to the local velocity
in m0, such that

mi
0 = m0 + Gui , i = 1, 2, . . . , Ne. (27)
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1618 J. Thurin, R. Brossier and L. Métivier

Figure 1. Schematic of the ETKF-FWI scheme. Dots represent state vectors, stars represent the measured state, crosses and ellipses are, respectively, means
and covariances. Blue denotes the forecast system state, red the analysis, green the observed data and grey the forecast data. The dynamic follows a modelling
frequency continuation axis from low to high frequencies, based on FWI multiscale approach.

Gui produces smooth perturbations which wavenumber is half of
the wavefields’ wavelength, corresponding to the maximum spatial
frequency that can be recovered (Wu & Toksöz 1987). The initial
ensemble is then inspected with an Eikonal solver, to ensure that
the initial population of models will not allow cycle skipping at
our starting frequency, that could be provoked by too dramatic
initial perturbations. Even though this test only allows assessing
the first arrival cycle skipping, it is deemed sufficient as a first-
order diagnosis of the initial ensemble quality. To further ensure
favourable initial conditions, we verify that the rank of the initial
ensemble is equal to Ne.

After applying the forecast operator to the Ne ensemble members,
the forecast system state (in blue, Fig. 1), is a set of Ne optimized
velocity models with respect to the considered band limited data.
After the forecast, synthetic wavefield data are computed in the
forecast ensemble to generate the forecast data (grey stars, Fig. 1).
To do so, we use the frequency domain forward modelling engine
used in the FWI process, to compute the wavefield in the whole
velocity model, and extract the pressure values at receiver locations.
It corresponds to applying the observation operator H as defined in
eq. (24)

d (i)
cal,k = H(m f

k

(i)
), (28)

The forecast data allows computing a misfit between the ensemble
and the observed data (green star, Fig. 1), which is required to
perform the analysis, calculate the transform operator and then
the analysis ensemble (in red, Fig. 1). The cost of the analysis is
negligible compared with the numerous forward modelling needed
for the forecast step.

After the model-wise adjoint-based inversion of the forecast, the
analysis allows performing an additional inversion, ensemble-wise,
rearranging the ensemble around the mean solution, and ensuring
coherency of the solution. Finally, we justify the compatibility of

the Gaussian assumption of the ETKF, with an application on a FWI
problem by the following: provided that all the ensemble members
are located along the same minimum of convergence (which is the
intent of this methodology), the assumed local convexity of the
cost function, necessary to apply a local optimization scheme, is
deemed a good first order approximation of Gaussian probability
density function.

The scheme has been tested on synthetic and field-data appli-
cations, to study the feasibility of the approach and evaluate its
shortcomings. The experimental setups and results for both cases
are presented and discussed in the next sections.

3 A P P L I C AT I O N O N 2 - D M A R M O U S I
S Y N T H E T I C B E N C H M A R K

We define a framework based on the Marmousi II synthetic model
(Martin et al. 2006). As our approach is intrinsically based on rank
reduction, we decide to evaluate its potential effects on our solution.
To that extent, we define three scenarios with increasing ensemble
sizes, Ne = 20, 100, 600. We consider K = 15 ETKF-FWI cycles
along with nω = 15 mono-frequency complex-valued data from
3 to 10 Hz, with a 0.5 Hz increment between each ETKF-FWI
cycle. The considered domain width and depth are, respectively,
x = 16.025 km and z = 3.250 km with vertical and horizontal res-
olutions of dx = dz = 25 m, for a total of 83 300 degrees of free-
dom.

The exact model, the initial ensemble mean and the acquisition
footprint, are displayed in Fig. 2. Data are simulated using a fixed
spread surface acquisition configuration, with 144 sources and 640
receivers evenly spaced, to mimic realistic marine streamer acqui-
sition, resulting in a data vector dobs with 92160 entries. The total
number of discrete data points is equal to 92160 × nω where nω

is the number of considered frequencies. The modelling/FWI code
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Ensemble-based uncertainty quantification in FWI 1619

Figure 2. Numerical experiment setting. Top panel: true Marmousi II model. Acquisition is denoted by a red line at the surface. Bottom panel: smoothed
version of the true model. It is used to build the starting ensemble, being the initial ensemble mean m0.

relies on the open-source TOY2DAC code developed in the SEIS-
COPE Consortium, coupled with the non-linear optimization tool-
box (Métivier & Brossier 2016). The solver used for the forward
simulations, relies on an optimized finite-difference discretization
strategy with a compact stencil providing accuracy, equivalent to
fourth-order methods for the applications considered here (Hustedt
et al. 2004; Operto et al. 2009). The modelling operation (22) is
solved using the MUMPS sparse solver (MUMPS team 2017). The
forecast operator In is set to perform n = 10 minimization iter-
ations with the l-BFGS optimization scheme (Byrd et al. 1995;
Nocedal & Wright 2006; Métivier & Brossier 2016), on each of
the Ne velocity models, with mono-frequency synthetic calculated
dcal,k ∈?Cd and observed data dobs,k ∈?Cd at frequency k. The cost
of the methodology is thus linearly linked with the number of en-
semble members and non-linear FWI iterations. In this instance,
the number of forward modelling is thus Ne × 10 × 2, as both
the incident and adjoint wavefields are computed at each iteration.
Once the forecast state is obtained, we compute the forecast data at
the frequency k with observation operator H. The observed data for
both the forecast inversions and the analysis are set to be the same
dobs, k data at step k. With the same observed data, we are perform-
ing two optimizations steps: model-wise first then ensemble-wise.
This pragmatical approach deviates from common ETKF scheme
where it is assumed to introduce new information during the anal-
ysis rather than relying on previous data. In our case, using the
same data for both the forecast and the analysis has given us more
consistent and stable results in terms of parameters estimate. We
attribute this behaviour to the nature of our forecasting operator.
Because In is updating the ensemble of models using dobs, k, the
wavenumber content of these updates is closely tied to the fre-
quency content of dobs, k. The ensemble of optimized models ob-
tained from dobs, k are likely to lack the higher wavenumber content
to explain or ‘predict’ higher frequency data dobs, k + 1. By using the
same objective data, the analysis’ purpose is to reduce the spread of
the ensemble and thus avoid unwanted cycle skipping amongst the
ensemble.

To avoid inverse crime, a complex Gaussian random noise was
added to the synthetic observed data (Eikrem et al. 2019):

dnoisy = d + ‖d‖√
r ∗ E(‖w‖2)

w (29)

with dnoisy the noisy signal, d the original signal, ‖.‖ indicating the
Euclidean norm and E the expectation. The vector w is defined as

w = v1 + iv2, (30)

where v1, v2 ∈?Rd are vectors of normally distributed random num-
bers and r is defined as the signal-to-noise ratio, such that

r = ‖d‖2

‖w‖2
. (31)

In the following experiments, we set up r = 8 as our reference noise
value through all the ETKF-FWI cycles. From eq. (29), we can see
that the noise added to the data has a variance given by

σ 2 = ‖d‖2

r ∗ E(‖w‖2)
(32)

which allows to define the measurement noise matrix such that

R = Idσ
2 (33)

where Id is an identity matrix of size d. This is required as we typi-
cally lack information about possible correlated measurement errors
in FWI. While the benefits of taking correlated noise structures into
account have been highlighted (Stewart et al. 2008; Weston et al.
2014), they cannot be taken into account in our case. Therefore
R has to be considered diagonal (which is a reasonable assump-
tion). Note also that if we could estimate the off-diagonal terms of
R, the computation of R−1 during the analysis step would become
computationally challenging.

We review the various outputs constituting the solution of our
ETKF-FWI in the next subsections.
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1620 J. Thurin, R. Brossier and L. Métivier

3.1 Parameter estimate

We first present the final ensemble means for Ne = 20, 100 and
600 in Fig. 3. All three test cases lead to consistent parameter es-
timation, as all three results are fairly comparable. Thanks to the
careful design of the initial ensemble, which limits the chances of
cycle-skipping occurrences, the whole ensemble is in a favourable
position to converge close to the global minimum. Moreover, be-
cause of the nature of our forecast operator (being an optimization
problem), it seems that the ensemble mean is clear of any drifting or
divergence effect, commonly encountered in typical dynamic EnKF
applications. It is also worth noting that the three results recovered
are close to the result of FWI alone given the same experimental
setup (initial model, acquisition design, data noise).

3.2 Ensemble variance

Although the mean of the ensemble corresponds to the parameter
estimate as a solution of the inverse problem, the posterior ensemble
covariance Pa

e is holding the uncertainty and resolution information
we are interested in. The full matrix cannot be computed explicitly
because of hardware limitations but computing its diagonal or in-
dividual lines are trivial operations when ma is stored. Initial and
final variance maps plotted over the parameter space are displayed
in Figs 4 and 5 and reflect the diversity of solutions for each param-
eter among the different ensemble members. Final variance values
are thus indicative of the convergence quality of our ensemble of
solutions.

Contrarily to the state parameter estimate, we observe a sub-
stantial lack of result consistency regarding the ensemble size. The
various ensemble size tested reveal that the ensemble covariance is
strongly affected by what is termed undersampling (Guzzi 2015) in
the DA community. Undersampling is an issue arising when a small
ensemble fails at being statistically meaningful. In this instance,
it translates to variance underestimation. Nonetheless, it is possi-
ble to identify consistent features in all three final variance maps.
The predominant effect is the link between geometrical spreading
and variance, manifested by the net increase towards the depth and
lateral limits of the physical domain, where poor illumination is ex-
pected. High variance values also tend to focus along sharp velocity
contrasts. We might associate high variance at interfaces with the
band-limited context of our application: band-limitation is expected
to limit the ability of the optimization scheme to recover sharp dis-
continuities which will tend to smooth the interfaces because of the
lack of high-frequency content. Another possible source of vari-
ability in interface recovering might be the inherent velocity–depth
ambiguity in tomography (Yilmaz 1993). To precisely evaluate how
variance changes according to the geological structure, we are in-
terested in the locations of variance maxima in Fig. 6.

To extract those maximum variance peaks, we use a maxium
filter of radius 275 m. The maximum filter dilates the variance
map, and create local zones of homogeneous values. Peaks (or
local maxima) are defined as parameters located where the variance
map and the output of the maximum filter are equal. Most of the
measured variance peaks are consistently located along interfaces
where high-velocity layer are overlaying lower velocity layers. As
stated before, band limitation and velocity–depth ambiguity might
explain why most of the structural uncertainty is linked to interfaces
reconstruction.

As for the quality of the variance estimate, assuming that the
test with ensemble Ne = 600 is the less affected with variance
underestimation, it is possible to make several observations. The

Ne = 20 case displayed in Fig. 5 exhibit a severe underestimation
of the variance values in most of the physical domain along with
non-physical oscillating behaviour in the deeper part of the domain.
Those oscillating patterns are a direct result of a small ensemble,
and thus a poor covariance approximation. For Ne = 100 however,
the variance map does not exhibit non-physical oscillations, but is
still slightly underestimated. The qualitative aspect of the variance
map is at least preserved.

To better understand the results of Fig. 5 and go beyond simple
qualitative comparison, we evaluate absolute variance values from
a set of ETKF-FWI realizations for Ne = [20, 600]. We evaluate the
underestimation of variance by computing the mean variance value
for every variance maps. We plot the averaged variance against
ensemble size in Fig. 7. As it stands, the trend in absolute variance
values seems to be consistent with the variance underestimation
observed Fig. 5. It is also worth noting that variance estimates
behave almost asymptotically, which means we can hope to find a
compromise between too small and too big ensembles, even though
it seems complicated to estimate this ‘optimal’ ensemble size in
advance, nor it is practical to evaluate it by trial and error. To
complete this analysis, we have computed the root-mean-square-
error (RMSE) values of the ensemble final means, with the true
model as reference:

RM SE =
√√√√ 1

n

n∑
i=1

(mn,true − m̄a
n)2, (34)

where mn, true is the nth parameter of true velocity model, and m̄a
n

is the nth parameter of the final ensemble mean. Values of RMSE
reduction between the initial model m0 and final ensemble means
are displayed in Table 1: RMSE reduction is not affected by the
ensemble size and all parameters estimates are nearly identical,
which is consistent with the results observed in Fig. 3.

3.3 Pa
e off-diagonal terms

Storing the ensemble also allows to examine the off-diagonal terms
of the covariance matrix, containing complementary information
regarding local resolution. However, undersampling makes it diffi-
cult to compare the three test cases, as it also impacts the quality
of the off-diagonal terms estimates. For the sake of comparison of
various results, we propose to work with the dimensionless correla-
tion matrix, instead of the covariance matrix that we estimate. The
correlation matrix is a dimensionless operator that contain correla-
tion coefficients from −1 to +1 (Feller 2008). When the correlation
coefficients tend to +1, it reflects a strong positive link between two
parameters, implying that they share similar physical properties and
are evolving in a similar fashion. Conversely, a negative correlation
coefficient of −1 denotes a strong link but expresses an opposite
behaviour between parameters. Finally, a correlation coefficient of
0 implies the absence of a physical connection between parameters.
To compute the correlation matrix, we first need to define D as a di-
agonal matrix containing the variance terms of Pa . The correlation
matrix is then given by,

C = (D)−1/2Pa(D)−1/2. (35)

C is thus a dimensionless, normalized version of the covariance
matrix, which diagonal terms are all equal to 1 (correlation of a
parameter with itself). By effectively normalizing the covariance
matrices by their variances, we simplify the comparison of our
three results.
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Ensemble-based uncertainty quantification in FWI 1621

Figure 3. Analysed ensemble means for ensemble sizes Ne = 600, 100, 20 after 15 ETKF-FWI cycles from 3 to 10 Hz.

We compute local correlation maps for three arbitrary selected
points shown in Fig. 8. This allows to evaluate correlation maps in
various conditions: A shallow point on a reflector with relative low
ensemble variance (orange), a point extracted from a strong reflector
with large relative variance (red) and a point selected at depth, where
the structure is only faintly recovered (black). Fig. 8(a) illustrate the
three parameters location (coloured crosses) and the subdomains
spanned by their local correlation maps (coloured rectangles). We
choose to work with local correlation maps rather than the full
domain as far-field is affected by spurious correlations and is thus
of lesser interest. We focus on local correlation map to evaluate the
consistency of local information in the vicinity of the investigated
parameters, as we would do with a point-spread function evalutation.

The shallower point (orange, at z = 1.0 km; x = 13.0 km) located
in a low variance area, displays chaotic and incoherent correlation
structures for the case Ne = 20 (Fig. 8b). Both the layer dip and
thickness informations are mostly lost in spurious correlations: even
local information is lost. Improvements are visible for Ne = 100,
600 (Figs 8c and d) where the dipping structure starts to be visible.
A small circular positive correlation zone in the immediate vicinity
of the examined parameter denotes the very high local resolution.
Despite the presence of spurious correlations, the geometrical in-
formation can be infered.

For the intermediate depth parameter (red, at z = 1.825 km; x
= 13.0 km), we observe on all three cases (Figs 8e, f and g), the
polarization of the positive correlation values along the axis of
the reflector, with correct thickness information. The limits of this
geological feature are well defined on the correlation map. These

results are encouraging, implying that despite the undersampling
effect associated with a small ensemble, some coherent dipping
information can be retrieved from the final ensemble.

Finally, the local correlation maps for the deeper point (red, at
z = 2.650 km; x = 13.0 km), are characterized by a broad zone
of strong positive correlation where the local structure is faintly
defined. This broad zone can be interpreted as a low resolution
power. It is expected to find such broad positive correlation ar-
eas in the deeper domain, as illumination becomes weak. We also
observe that despite the significant undersampling hinted by vari-
ance underestimation, the correlation maps for Ne = 20 still dis-
play the essential qualitative information (polarization along inter-
faces, correlation length radius). The stronger undersampling bias
happens in the shallow zone. This leads us to think that under-
sampling biases might be decreasing with depth, as the problem
is less constrained, and the ensemble is less likely to ‘collapse’
towards a unique solution and lose representativity. Those obser-
vations are encouraging, as we expect model parameters along the
same interface, or in the same geological feature, to be defined with
similar physical properties and correlation length to increase with
depth.

Overall, this synthetic application showed that the ensemble is
sensitive to undersampling when it comes to the covariance estimate,
whereas the parameter estimate remains coherent even with a mea-
ger number of ensemble members. The next section is dedicated
to field-data seismic exploration FWI application to demonstrate
the applicability of the ETKF-FWI scheme, in a less favourable
case.
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1622 J. Thurin, R. Brossier and L. Métivier

Figure 4. Initial ensemble variance maps for ensemble sizes Ne = 600, 100, 20.

4 F I E L D - DATA A P P L I C AT I O N

This field-data application is also based on 2D Frequency Domain
FWI, but this time considering a VTI anisotropic medium for the
modelling. The data set comes from the Valhall oilfield, located in
the Norwegian North sea and is provided by AkerBP. The specificity
of the Valhall oil field is its shallow water level (70 m). It features a
reservoir with an anticline cap-rock structure, traping the underlying
hydrocarbon resources at a 2.5 km depth. The advantage of this case
study is that it is well documented, and FWI has already been applied
successfully to this data set (Operto et al. 2015). The domain width
and depth are, respectively, x = 16.725 km and z = 5.025 km with
vertical and horizontal resolutions of dx = dz = 25 m, for a total
of 134 469 degrees of freedom.

The data set is composed of four component Ocean Bottom Cable
(OBC) recordings. From the full acquisition which contains 49
954 shots for 2302 receivers, we extract a 2-D line containing 192
sources and 315 receivers (which makes each frequency data vector
composed of 60 480 entries), the same as the one used in (Zhou et al.
2018). The total number of discrete data points is equal to 60 480
× nω. OBC receivers are evenly spaced (50 m) and lie fixed on the
seabed (70 m depth). The selected sources are also evenly spaced
(50 m) at a constant 5 m depth. In this application, we exploit the
hydrophone out of the 4 components recording.

The ETKF-FWI scheme is the same as presented in the previous
experiment. To ensure the best-case scenario result, we work with
an ensemble of Ne = 600 members, as the application size is of the
same order of magnitude as the synthetic test case. We choose to
work with K = 6 ordered groups of frequencies ranging from 3.56
to 7.01 Hz. This frequency selection strategy has been suggested

in preliminary work conducted by Zhou (2016) on this data set,
and have proven to be adequate for this specific application. Using
frequency groups rather than mono-frequency data ensures that
each inversion cycle rely on redundant information which mitigate
the risks of cycle-skipping. Contrarily to the synthetic test case,
we are considering several groups of monochromatic data for both
our FWI forecast operator and the analysis, bringing the amount of
mono-frequency data pieces to nω = 15.

As in the previous application, the measurement noise matrix
R is defined as a scaled Identity matrix. Because this application
is based on groups of frequencies, we evaluated the variance for
each of the monochromatic data to be included in R from their
signal-to-noise ratio according to eq. (32), which makes R block
diagonal, each block corresponding to a monochromatic data vari-
ance as given in equation 32. This time, the optimization scheme
used during the forecast inversions is a preconditionned version
of the l-BFGS scheme. We review two cases, a monoparameter
P-wave velocity test cases, and a multiparameter {P-wave veloc-
ity, density} inversion, to evaluate the cross-talk between inver-
sion parameters, and the ETKF-FWI behaviour with multiparameter
inversion.

4.1 P-wave velocity reconstruction

After the 6 ETKF-FWI cycles, we obtain an ensemble of solutions,
as with the synthetic case. Focusing first on the parameter estimate,
we compare the initial and final ensemble means in Fig. 9. As ex-
pected from the previous experiment, the final mean model provides
a net increase in resolution. Layered structures are well defined in
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Ensemble-based uncertainty quantification in FWI 1623

Figure 5. Analysed ensemble variance maps for ensemble sizes Ne = 600, 100, 20 after 15 ETKF-FWI cycles from 3 to 10 Hz.

Figure 6. Variance map (top panel) and final mean velocity model (bottom panel). Red points denotes local maximum variance peaks in both maps.Variance
peaks are evaluated with a maximum filter defined with a 275 m radius.

the top half of the domain, and from this result, we can identify what
can be interpreted as hydrocarbon-charged units overlaying the an-
ticline structure. The deep layered structures are not as sharp as the
top section because of the strong impedance contrast between the
upper and lower units of the medium. The strong P-wave velocity

contrast between the upper and lower domain is expected to reduce
the illumination power in the depper part of the model, along with
the geometrical spreading effect.

We compare initial and final variance maps in Fig. 10. While
the initial variance is relatively large in the entire domain (the
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1624 J. Thurin, R. Brossier and L. Métivier

Figure 7. Average variance plotted against ensemble size.

Table 1. Normalized root-mean-square model error (RMSE) reduction with respect to the initial model for various ensemble sizes. The RMSE values are
computed between the final ensemble mean and the true model. The amount of RMSE reduction is computed with the initial model RMSE as reference.

Ne 20 30 40 50 60 80 100 200 300 600

RMSE reduction (per
cent)

15.4 15.4 15.6 15.0 15.2 15.9 15.7 15.6 15.3 15.6

(a)

(b) (c)

(e) (f)

(h) (i)

(d)

(g)

(j)

Figure 8. Reference variance map (a) and local correlation maps (b–j) for Ne = 20, 100 and 600. Coloured squares on the variance map correspond to the
extents of the local correlations for the three considered parameters.

water depth is not perturbed), the final variance displays the same
two tendencies as in the synthetic case. The first order uncer-
tainty structure is dominated by the geometrical spreading and
the sharp velocity contrast between the upper and lower units at
2.5 km depth. Second to that are the variance values imposed by
the velocity structures estimated in the solution. Note that we use

a non-linear colourscale to underline uncertainty associated to the
structure.

To repeat the procedure detailed in the synthetic application and
evaluate how the variance aligns with the velocity structure, we
computed maximum peak locations in the variance map (Fig. 11).
The search radius has been reduced to 150 m because of the
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Ensemble-based uncertainty quantification in FWI 1625

Figure 9. Top panel: initial ensemble mean velocity model m0. Acquisition is denoted by a red line at the surface. Bottom panel: final enemble mean velocity
model after 6 ETKF-FWI cycles from from 3.56 to 7.01 Hz.with Ne = 600.

Figure 10. Initial and final variance maps after 6 ETKF-FWI cycles from from 3.56 to 7.01 Hz with Ne = 600.

smoothness of the variance map. Despite the map smoothness and
the thin layered structure in the final velocity model, we can con-
firm that local uncertainty maxima are preferentially located along
structure discontinuities.

Correlation maps are also computed in the final ensemble, follow-
ing the same procedure as for the synthetic test, for three parameters
denoted as orange, red and black (Fig. 12)

The horizontally layered structures can be observed in all three
parameters correlation maps. We also observe the effect of resolu-
tion loss between the orange (located at z = 1.3 km and x = 5.0 km
and the black parameter (located at z = 2.8 km and x = 12.6 km),
characterized by the increase of the positive correlation radius
around the parameter. We also point out the coherency of the
correlation maps with the recovered structure as visible for the

black parameter. Indeed, the broad, circular positive correlation zone
around the parameter is abruptly stopped by the velocity contrast at
2.5 km depth.

Comparing the velocity model computed through the ensemble
method to a classical FWI result (Fig. 13), shows that the ETKF-FWI
produces a mean model similar to the corresponding FWI solution.
We can, however, notice that the resolution of the mean ETKF-FWI
is slightly higher and the contrasts between the layers velocity appear
stronger in the ETKF-FWI result, both in the shallow and deep parts
of the model. This might be due to the effect of the analysis step,
which provides a correction from the estimated covariance matrix.
This could have an effect similar to the one of a preconditioner
which approximates the inverse Hessian operator. This is further
discussed in the following multiparameter application.
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1626 J. Thurin, R. Brossier and L. Métivier

Figure 11. Variance map (top panel) and final mean velocity model (bottom panel). Red points denotes local maximum variance peaks in both maps.Variance
peaks are evaluated with a maximum filter defined with a 150 m radius.

Figure 12. Reference variance map (top panel) and local correlation maps (bottom panel) for Ne = 600. Coloured rectangles on the variance map correspond
to the extents of the local correlations subdomains for the three considered parameters.

However, the quality of these results is strongly linked to the ini-
tial ensemble parameterization. Modifying the initial perturbations
correlation length or amplitude will result in a different outcome,
or might cause instabilities if incorrectly chosen.

4.2 P-wave velocity and density reconstruction

In the following, we present preliminary multiparameter inversion
results to show the potential of the method for uncertainty esti-
mation and parameter estimation. Multiparameter FWI is known
as a challenging problem, especially because of the presence of
cross-talks between parameters (Operto et al. 2013). Recovering
information about the uncertainty linked to these cross-talks is thus
crucial, and might be an important benefice from strategies such
as the ETKF-FWI scheme presented here. We modify the system
state vector such that the columns of the ensembles contain both
the velocity parameter Vp and the density ρ instead of the velocity

alone

m(i)
Vp ,ρ =

(
Vp

ρ

)
. (36)

Considering the joint state m(i)
Vp ,ρ makes it possible to take the

changes of density during the forecast optimization steps into ac-
count when the analysis is performed. Note that the extension of
the state vector also implies an extension of the state covariance
matrix. It is expected that the cross-talk terms between Vp and ρ

(off-diagonal blocks of the covariance matrix) will play a role in the
Kalman Gain estimate.

The initial density perturbations are derived from the initial per-
turbed velocity model according to Gardner’s empirical relationship
(in soil only) (Gardner et al. 1974)

ρ = 0.31V 0.25
p . (37)

This way, initial ensemble members’ velocity and density perturba-
tions are physically linked.
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Ensemble-based uncertainty quantification in FWI 1627

Figure 13. Comparison of monoparameter ETKF-FWI (top panel) and FWI (bottom panel) results with similar inversion setup (inversion parameters,
regularization, acquisition geometry and data frequency groups).

The starting ensemble mean veloctiy and density models are
displayed in Fig. 14. The ETKF-FWI scheme is applied following
the same setup as detailed for the monoparameter test, except for
the forecast that now includes inversion of the density parameter
alongside the inverted velocity. The parameter estimation after 6
ETKF-FWI cycles are shown in Fig. 15.

The recovered velocity model is almost identical to the velocity
estimate from the monoparameter case. As for the density inversion,
the horizontally layered structures observed in the velocity map, are
closely matching the density estimate. A lower density is seen in
the central area where hydrocarbon charged layers are expected to
be located.

The joint covariance matrix for the multiparameter case contains
four blocks. Its structure is defined by

P[Vp ,ρ] =
[

PVp Vp PVpρ

PρVp Pρρ

]
, (38)

where PVp Vp and Pρρ are the variance matrices of the marginal
distribution of Vp and ρ, respectively, and PVpρ and PρVp are the
cross-covariance blocks. Note that since PVp ,ρ is symmetric, we
have PρVp = PT

Vpρ by definition. The PVp Vp block is expected to yield
results similar to the covariance matrix in the mono-parameter case,
while the Pρρ block is its equivalent for the recovered density. The
cross-covariance blocks are instead a measure of the link between
the two parameters, and therefore makes it possible to quantify the
inversion cross-talk between velocity and density. Starting with the
parameter’s uncertainty and cross-talk, we extract the four diagonal
elements of the block joint-covariance matrix and plot them as
variance and cross-covariance maps in Figs 16 and 17.

The initial variance maps are displayed in Fig. 16. The initial ve-
locity variance distribution tends to the monoparameter case starting
distribution, while the initial density variance map is very different.
This is a result of the use of Gardner’s law to produce the initial
density models from perturbed velocity. The cross-covariance maps
are symmetric and appear to be a combination of both velocity and
density variances. The final variance maps are displayed in Fig.17.
As in the previous results, the geometrical spreading effect is the

prevalent source of uncertainty in the velocity reconstruction, while
structural uncertainty is the dominant effect in the density variance
map. Although the geometrical spreading is not directly visible in
the density variance map, the higher variance values are located in
the deeper region of the model nonetheless. The cross-covariance
maps seem to indicate that the cross-talk between parameters is
strongly linked to their respective uncertainties. The differences be-
tween the velocity variance map and the density variance map can
be linked to wave propagation theory. The prevalence of the geo-
metrical spreading effect can be associated to the higher sensitivity
of the body waves to velocity perturbations, while the structural
uncertainty in the density map could be explained by the higher
sensitivity of reflected-arrivals towards density changes.

Added to the diagonal elements of the block-covariance matrix,
individual parameters resolution and cross-talk terms of the block-
correlation matrix are evaluated. This is achieved by extracting four
corresponding lines out of the different blocks and mapping the
correlation coefficients into the physical domain. This procedure is
the extension of the correlation maps computation of the previous
applications, to the block-diagonal structure. We choose a parameter
arbitrarily, located at z = 2.0 km; x = 9.6 km and plot its initial
correlation maps in Fig. 18 followed by their final correlation maps
in Fig. 19.

Although the initial correlations are identical in all blocks due
to the models’ generation, the final correlation patterns are entirely
different in the final maps. There is a sharp difference of resolution
in velocity and density: velocity correlations are laterally oriented
along the structure, while density correlations are oriented along a
vertical axis across the domain. The resolution information is co-
herent with theoretical expectations as stated previously; velocity
reconstruction is mostly constrained by diving waves that can ex-
plain lateral ambiguity, while density is constrained by short offset
reflections arrivals, which can explain the higher vertical uncer-
tainty.

Besides, correlation cross-talk maps allow evaluating the cou-
pling effect between velocity and density across the whole do-
main. In that case, they are negligible with respect to the parameter
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1628 J. Thurin, R. Brossier and L. Métivier

Figure 14. Top panel: initial ensemble mean velocity model m0,Vp . Bottom panel: initial ensemble mean density model m0, ρ .

Figure 15. Top panel: final ensemble mean velocity model m0,Vp . Bottom panel: final ensemble mean density model m0, ρ .

resolution maps which makes the recovered density map believable
(as density reconstruction does not seems to be contaminated by
velocity leakage during the inversion).

Finally, we compare the estimated density, with an equivalent
multiparameter FWI result, obtained with a similar inversion setup
(data selection and processing, number of minimization steps, initial
model) in Fig. 20.

Contrarily to the velocity estimation, there are significant discrep-
ancies between the density model recovered by the ETKF-FWI and
its FWI equivalent. The density in the hydrocarbon layers is lower
in the FWI estimate, while the ETKF-FWI result is characterized by
a high wavenumber content and sharper density contrasts. Because
of these differences, both density estimates have been evaluated
by comparing the synthetic data-fit with the observed common re-
ceiver gather data. Time-domain synthetic common-receiver gathers

are plotted in colour over the black-and-white observed data after
filtering with a 6–8 Hz band-pass filter in Fig. 21. On this visualiza-
tion, synthetic blue arrivals should overlap white, observed arrivals,
while red should be overlapped by black arrivals (and therefore not
be visible). The blue colour is hence indicative of good fit, while
visible red is indicative of phases misalignment.

While the FWI result (centre panel) is significantly improving
on the initial models (left-hand panel), the ETKF-FWI result (right-
hand panel) is exhibiting an overall better data fit. Late arrival diving
waves, as well as near offset reflections, are improved (see red el-
lipses). It seems that the analysis step of the ETKF-FWI acts as a
Hessian-like pre-conditioning term, allowing a better convergence,
which might enhance parameter disambiguation. While these pre-
liminary results are a call for careful investigations, it seems that
the analysis of the joint-space allows for better convergence of the
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Ensemble-based uncertainty quantification in FWI 1629

Figure 16. Diagonal elements of the initial joint-covariance matrix, plotted in the physical domain arranged according to their respective position in the block
matrix. Top left-hand panel: P-wave velocity variance in m2 s–2. Bottom right-hand panel: density variance in kg2 m–6. Bottom left and top right-hand panels:
Vp, ρ cross-covariance maps in kg (s.m2)–1.

Figure 17. Diagonal elements of the posterior joint-covariance matrix, plotted in the physical domain arranged according to their respective position in the
block matrix. Top left-hand panel: P-wave velocity variance in m2 s–2. Bottom right-hand panel: density variance in kg2 m–6. Bottom left and top right-hand
panels: Vp, ρ cross-covariance maps in kg (s.m2)–1.

ETKF-FWI scheme, compared to the classical FWI. These results
prompt us to investigate the possibilities of extension of the method-
ology beyond mono-parameter inversion in future studies.

5 D I S C U S S I O N

These ETKF-FWI applications raise several points of discussions
and questions that are yet to be answered.

What is the role of the analysis? In our applications, the Analysis
step plays a crucial role in limiting the ensemble spread and thus
prevents the ensemble from splitting over several local minima. The

role of the analysis is essential to rebalance the ensemble around
the optimal mean (in the least squares sense) and lower the variance
of the forecast ensemble. We can illustrate this behaviour with the
evolution of variance between the forecast and the analysis steps in
Fig. 22.

After the forecast, we observe a reduction of variance in shallow
areas, but also a significant increase along a sharp velocity con-
trast (at 1.5 km depth). Because we cannot ensure that all of the
Ne models will resolve the interface within the same number of
iterations, the variance might increase in this specific area of the
model. The analysis is responsible for a decrease of variance in the
whole map, but its effect is predominant along with this velocity
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1630 J. Thurin, R. Brossier and L. Métivier

Figure 18. Off-diagonal elements of the initial joint-covariance matrix, plotted in the physical domain. The covariance matrix lines considered are corresponding
to the parameter located at z = 2.1 km; x = 9.6 km. Top left-hand panel: P-wave velocity correlation coefficient. Bottom right-hand panel: density correlation
coefficient. Bottom left and top right-hand panels: correlation cross-talk terms.

Figure 19. Off-diagonal elements of the posterior joint-covariance matrix, plotted in the physical domain. The covariance matrix lines considered are
corresponding to the parameter located at z = 2.1 km; x = 9.6 km. Top left-hand panel: P-wave velocity correlation coefficient. Bottom right-hand panel:
density correlation coefficient. Bottom left and top right-hand panels: correlation cross-talk terms.

contrast. Therefore the analysis is needed to improve the chances to
sample a single minimum rather than splitting the ensemble. Note
also that the Hessian-like preconditioning effect we have mentioned
in the field data application might be related to this phenomenon.
Given the forecast generates a high variance in some areas (that
appear challenging to recover), most of the Analysis model up-
date will take place in those areas, which should improve their
recovery.

How much of a problem is undersampling? Regarding under-
sampling, its effects seem not too dramatic, as they do not affect
the state estimate capabilities of the ETKF-FWI. We attribute this
robustness to the inversion scheme that acts as our forecast, which

is not expected to spread-out the ensemble members. The under-
estimation of variance and spurious correlations might be more of
an issue, as they have a direct impact on our ability to use and in-
terpret the quantitative covariance data. Variance underestimation
is typically solved through what is referred to as covariance matrix
inflation in the DA community (Anderson & Anderson 1999). The
goal of inflation is to artificially increase the forecast covariance
by a factor r to mitigate overconfidence in the forecast. However,
due to the necessity of evaluating an appropriate inflation parameter
through trials and errors, its implementation in our case is limited.
We might find a solution in recent DA schemes that enables auto-
matic inflation settings (Miyoshi 2011), or overcome the inflation
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Ensemble-based uncertainty quantification in FWI 1631

Figure 20. Comparison of ETKF-FWI (top panel) and FWI (bottom panel) density estimate with similar inversion setup (inversion parameters, regularization,
acquisition geometry and data frequency groups).

Figure 21. Datafit evaluated on a common receiver gather between (from left to right), the initial models, the FWI outcome and the EKTF-FWI outcome.
Blue arrivals denote a good data fit over corresponding white arrivals. Red arrivals overlapping white arrivals are indicative of misaligned phases. Major
improvement areas granted by the ETKF-FWI results have been marked with red ellipses in all three common-receiver gathers.

issue altogether like the finite-size EnKF (Myrseth & Omre 2010;
Bocquet 2011; Myrseth et al. 2013; Bocquet et al. 2015). On the
other hand, our observation operator is strongly non-local, which
prevents us from applying covariance localization, the conventional
solution to mitigate spurious correlation terms in the covariance
matrix. Thus we propose to rely mostly on local covariance infor-
mation, that seems to be preserved most of the time (as seen in
correlation maps) and appears to be a reliable resolution proxy. Ul-
timately, the undersampling issues allowed us to address the validity
of our low-rank approximation, and evaluate its associated biases.
We think this specific point should be investigated in any method-
ology proposal based on rank reduction or Hessian approximation,
which is unfortunately not always discussed in current propositions
among the uncertainty estimation literature.

How to characterize prior uncertainty, and define the initial en-
semble ? Good practices when it comes to initial ensemble building
may deserve entire research focus on its own. As it stands, we have
adopted a pragmatical approach to generate initial perturbations,
but defining ‘optimal’ and how an optimal initial ensemble should
be built, is an open question. One might advocate for producing
greater variance initial ensembles, to allow further parameter ex-
ploration at the cost of stability and convergence. Another option
would be to align with the tests we have set up by limiting the
spread of the initial ensemble to ensure an optimal parameter esti-
mation. To constrain a strict convergence, one might even choose
to add perturbation in limited portions of the model only, to limit
the chances of unphysical updates during the analysis. For instance,
in our field-data test case, we could remove perturbations in the
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1632 J. Thurin, R. Brossier and L. Métivier

Figure 22. Evolution of variance between the forecast and the analysis step. These variance maps have been extracted from the synthetic application during the
first ETKF-FWI cycle. They are, respectively, the first forecast variance (top panel) and the first analysis variance (bottom panel). The forecast is responsible
for both increase and decrease of variance, while the analysis only reduces the variance.

lower half of the domain, constrained by a small portion of data.
This would prevent any unphysical updates driven by the data term
during the analysis. With such questions, we think the initial model
building deserves a careful investigation, as the options mentioned
above might be logical choices depending on one’s goals.

How is the quantitative uncertainty estimate reliable? It has to
be reminded that uncertainty estimates are, at best, expressed both
in terms of ‘local optimization’ uncertainty and in the frame of
finite-frequency wave propagation. As the wave propagation and
the limited coverage act as a filter over the physical domain, it is
not possible to link quantitative uncertainty with absolute physical
parameter uncertainties. We instead think uncertainty should be
expressed in terms of the optimal apparent macromodel as ‘seen’
by the waves, in similar ways as Capdeville & Métivier (2018)
suggestion for downscaling and homogenization problems. Another
possibility would be to find a way to express quantitative uncertainty
regarding a reference FWI result. Unfortunately, it is unclear if we
will be able to move towards real physical parameter uncertainty.

Extension and perspectives. It is worth noting that the technique
might be extended to time domain applications to match current
industrial standards. Time domain extension, despite requiring a
completely different strategy concerning data management (mainly
related to the cost of time domain FWI), could allow introducing
time-based localization to the ETKF-FWI approach. A more global
view of the approach also leads to the question of the variables
and observations to consider in the ETKF-FWI. Up to now, only
velocity and density have been introduced as variable, but other
multiparameters system states could be considered. As an example,
including the entire wavefield as an unknown variable of the ETKF,
would allow making some links with the WRI proposed by van
Leeuwen & Herrmann (2013), as both the physical parameter and
the wavefield would be considered as unknowns. Multiparameter
FWI fits well into this type of methodology extension, as it grants
easy access to the cross-talk terms between inversion parameters,
which are currently a challenging issue in multiparameter inversion.
The benefits of the joint-inversion, as shown by the improvement on

data-fit in our multiparameter test case, will have to be thoroughly
evaluated.

Cost and applicability. The differences and added values of the
proposed approach relying on ETKF have to be evaluated to other
methods from the literature, along with its practicality when it comes
to applications. First, we have not discussed how this methodology
compares with global optimization approaches. Global optimization
approaches such as Martin et al. (2012), Biswas & Sen (2017) and
Sajeva et al. (2017) are trying to mitigate the non-convexity of the
cost function by sampling the entirety of the solution space, rather
than sampling the cost function around the solution as we performed
in the ETKF-FWI. While these methods seem very appealing, they
have to rely on tricks to make this sampling possible and alleviate the
curse of dimensionality problem they would face otherwise. These
approaches are thus either limited to small problems (with a low
number of unknown to sample) or rely on clever parameterizations
(such as B-spline functions or Voronoi tessellation) to reduce the
size of the search space. Nonetheless, most of these methodology
will require several thousands of samples [and thus as many partial-
differential-eq. (PDE) to solve], which makes them challenging to
use as up to now. They also tend to produce very coarse solution to
the inverse problem [which nonetheless makes for great potential
starting models for local uncertainty estimation, as shown in Sajeva
et al. (2017)]. The philosophy of local and global approaches differs,
as they propose to deal with very different but complementary
aspects of uncertainty estimation.

The local approaches that are more akin to our proposition are
based on rank-reduction methods. These approximations of the in-
verse Hessian operator in the vicinity of the solution, make sampling
from the posterior covariance matrix affordable. Their low-rank ap-
proximation of the inverse Hessian operator, require to solve sev-
eral forward and adjoint PDEs, typically several hundred to several
thousand per frequencies (for example Bui-Thanh et al. (2013) is
evaluating 1400 PDE to estimate the first 700 eigenvalues of their
global FWI application with hundreds of thousands of parameters).
Fang et al. (2014) requires to solve approximately 6000 forward
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modelling problems, with their MCMC sampling to produce an un-
certainty estimate (with most of the cost coming from the sampling
strategy). Zhu et al. (2016) is able to produce an uncertainty estima-
tion along with the solution of the inverse problem at the minimal
cost of 144 PDE resolution thanks to the assumption made on the
structure of the Hessian operator. Though this cost is indeed reason-
ably low, it does not include the computational cost of the reverse
time migration they are using to precondition their sampling. Fi-
nally, the number of PDE solved to sample the posterior covariance
in Fang et al. (2018) proposition, is the number of sources plus the
number of receivers per frequencies (not including the number of
PDE to solve the inverse problem). Besides, this method does seem
to display challenging memories limitation as it requires to store
the optimal wavefields in memory for each frequency bands, which
may become challenging for large scale 3-D application. The ex-
tension to uncertainty estimation of multiparameter inversion also
seems to be non-trivial in this extended domain FWI application, as
only recent publications are addressing the multiparameter aspect
of WRI (Aghamiry et al. 2019). Note also that the low-rank ap-
proximation methods of the propositions mentioned above (such as
randomized Singular-Value-Decomposition, or Lanczos methods)
are sequential by nature which makes these uncertainty methods
only as scalable as their PDE solver can get.

In comparison, the cost of ETKF-FWI in our applications ranges
from 5000 to 18 000 PDE solve (for the synthetic and field data
cases, respectively), which might appear to be a daunting number
(although convergence tests have shown we could potentially con-
sider smaller ensemble size). However, unlike the other methods,
we are set to solve an embarrassingly parallel problem as all of our
ensemble members are evolving independently during the bulk of
the computational time (forecast step), which makes our problem
not only scalable on the PDE solver but fully scalable on the ensem-
ble size. Thanks to this advantage, and because of the development
of hardware capacities towards the exascale and the current trend
towards grid computation, we believe that the ETKF-FWI for un-
certainty estimation can be a valuable approach even for large-scale
FWI problems, as it is currently the case for DA applications.

6 C O N C LU S I O N

We have demonstrated in those applications that the ETKF can
be paired with a frequency-domain FWI quasi-Newton solver suc-
cessfully, and allows for uncertainty estimation of the solution.
The results we have obtained so far are encouraging in several re-
gards. The presented method can produce a robust state estimation
while allowing to recast our inversion problem in a local Bayesian
framework. Variance and correlation maps only require to store the
ensemble to be computed. Those maps provide a straightforward
way of evaluating the quality of convergence, the correlation links
and tradeoffs between parameters. It also allows integrating some
form of data weighting terms in the whole tomographic process via
the measurement noise matrix R. If R is set properly, the resulting
uncertainty takes into account the physical properties of assimilated
data. The extension perspectives offered by the DA framework and
the full scalability of the method makes it a great candidate for
uncertainty estimations.
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